Du betrachtest gerade Quant vs Data Scientist – Berufsbilder im Vergleich

Quant vs Data Scientist – Berufsbilder im Vergleich

Im Arbeitsumfeld Business Analytics und Data Science gibt es viele Berufsbilder, oder besser: Rollenbilder. Eine davon ist die Rolle des sogenannten Quant. Quants kennt man aus Filmen wie Margin Call, The Big Short oder The Hummingbird Project. Oft als coole Typen oder introvertierte Nerds dargestellt, geht es in diesen Filmen im Kern um sogenannte Quantitative Analysts, oder eben kurz Quants, die entweder die großen Trading Deals abschließen oder Bankenpleiten früher als alle anderen Marktteilnehmer erkennen, stets mit Computern und Datenzugriffen ausgestattet, werfen Sie tiefe Blicke in die Datenbestände von Finanzinstituten und Märken, das alles unter Einsatz von Finanzmathematik.

Quants sind in diesen und anderen Filmen die Helden. Den Hackern nicht unähnlich, scheinen sie in Filmen geradezu über Super-Kräfte zu verfügen, dem normalen Menschen, ja sogar dem erfahrenen Banken-Manager gegenüber deutlich überlegen zu sein. Nicht von ungefähr daher auch “Quant”, denn die Kurzform gefällt mit der namentlichen Verwechslungsgefahr gegenüber der kaum verstandenen Quantenphysik, mit der hier jedoch kein realer Bezug besteht.
Auf Grundlage der Filme zu urteilen, scheint der Quant dem Data Scientist in seiner Methodik dem Data Scientist ebenbürtig zu sein, wenn auch mit wesentlich prominenterer Präsenz in Kinofilmen.

Was unterscheidet einen Quant vom Data Scientist?

Quantitative Analysts gehören, vom Wortlaut der Berufsbezeichnung her betrachtet, zu den Analysten. Sie arbeiten oft in Banken oder auch Versicherungen. In letzteren arbeiten sie vor allem an Analysen rund um Versicherungs- und Liquiditätsrisiken. Auch andere Branchen wie der Handel oder die Energiebranche arbeiten mit Quantitativen Analysten, z. B. bei der Optimierung von Preisen und Mengen.

Aus Hollywood-Filmen kennen wir Quants aus dem Investmentbanking und Risikomanagement, hier sind sie die Ersten, die Finanzschwierigkeiten aufdecken oder neue Handelschancen entdecken, auf die andere nicht kommen. Die Außenwahrnehmung ist denen der Hacker gar nicht so unähnlich, tatsächlich haben sie auch Berührungspunkte (nicht aber Überlappungen in ihren Arbeitsbereichen) zumindest mit forensischen Analysten, wenn es um die Aufdeckung von Finanzskandalen bzw. dolose Handlungen (z. B. Bilanzmanipulation, Geldwäsche oder Unterschlagung) geht. Auch bei Wirtschaftsprüfungsgesellschaften arbeiten Quants, sind dort jedoch eher als Consultants für Audit oder Forensik bezeichnet. Diese setzen ebenfalls vermehrt auf Data Science Methoden.

In ihrer Methodik sind sie sowohl in Filmen als auch in der Realität der Data Science nicht weit entfernt, so analysieren Sie Daten oft direkt auf der Datenbank oder in ihrem eigenen Analysesystem in einer Programmiersprache wie R oder Python. Sie nutzen dabei die Kunst der Datenzusammenführung und -Visualisierung, arbeiten auf sehr granularen Daten, filtern diese entsprechend ihres Analysezieles, um diese zu einer Gesamtaussage z. B. über die Liquiditätssituation des Unternehmens zu verdichten. Im Investmentbanking nutzen Quants auch Methoden aus der Statistik und des maschinellen Lernens. Sie vergleichen Daten nach statistischen Verteilungen und setzen auf Forecasting-Algorithmen zur Optimierung von Handelsstrategien, bis hin zum Algorithmic Trading.

Quants arbeiten, je nach Situation und Erfahrungsstufe, auch mit den Methoden aus der Data Science. Ein Quant kann folglich ein Data Scientist sein, ist es jedoch nicht zwingend. Ein Data Scientist ist heutzutage darüber hinaus jedoch ein genereller Experte für Statistik und maschinelles Lernen und kann dies nahezu branchenunabhängig einbringen. Andererseits spezialisieren sich Data Scientists mehr und mehr auf unterschiedliche Themenbereiche, z. B. NLPComputer VisionMaschinen-Sensordaten oder Finanz-Forecasts, womit wir bei letzterem wieder bei der quantitativen Finanz-Analyse angelangt sind. Die Data Science tendiert darüber hinaus jedoch dazu, sich nahe an die Datenbereitstellung (Data Engineering) – auch unstrukturierte Daten – sowie an die Modell-Bereitstellung (Deployment) anzuknüpfen (MLOp).

Fazit

Der Vergleich zwischen Quant und Data Scientist hinkt, denn beide Berufsbezeichnungen stehen nicht auf der gleichen Abstraktionsebene. Ein Quant kann auch ein Data Scientist sein, muss es jedoch nicht. Beim Quant handelt es sich, je nach Fähigkeit und Tätigkeitsbedarf, um einen Data Analyst oder Scientist, der insbesondere Finanzdaten auf Chancen und Risiken hin analysiert. Dies kann ich nahezu allen Branchen erfolgen, haben in Hollywood-Filmen ihre Präsenz dem Klischee entsprechend in einer Investmentbank und sind dort gedanklich tiefer in den Daten als alle anderes (was der Realität durchaus entsprechen kann).

Sie interessieren sich für quantitative Analysen? Oder Sie möchten mit uns eine ganz konkrete Problemstellung besprechen? Vielleicht sind Sie aber auch an einer Ausbildung zum Data Scientist interessiert? Nutzen Sie unser Kontaktformular oder schreiben Sie uns eine E-Mail an info@datanomiq.de.

DATANOMIQ ist der herstellerunabhängige Beratungs- und Service-Partner für Business Intelligence, Process Mining und Data Science. Wir erschließen die vielfältigen Möglichkeiten durch Big Data und künstliche Intelligenz erstmalig in allen Bereichen der Wertschöpfungskette. Dabei setzen wir auf die besten Köpfe und das umfassendste Methoden- und Technologieportfolio für die Nutzung von Daten zur Geschäftsoptimierung.